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Abstract: For simple prospects routinely used for certainty equivalent elicitation, random 

expected utility preferences imply a conditional expectation function that can mimic 

deterministic rank dependent preferences. That is, an agent with random expected utility 

preferences can have expected certainty equivalents exactly like those predicted by rank 

dependent probability weighting functions of the inverse-s shape discussed by Quiggin 

(1982) and advocated by Tversky and Kahneman (1992), Prelec (1998) and other scholars. 

Certainty equivalents may not nonparametrically identify preferences: Their conditional 

expectation (and critically, their interpretation) depends on assumptions concerning the 

source of their variability. 
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Elicitation of certainty equivalents has become routine in laboratory measurement of 

preferences under risk and uncertainty (Tversky and Kahneman 1992; Tversky and Fox 

1995; Wu and Gonzales 1999; Gonzales and Wu 1999; Abdellaoui 2000; Abdellaoui, 

Bleichrodt and Paraschiv 2007; Halevy 2007; Bruhin, Fehr-Duda and Epper 2010; Vieider 

et al. 2015). While elicitation methods vary across such studies, the formal empirical 

interpretation of elicited certainty equivalents is invariably the same. The subject is 

assumed to have a unique and fixed preference order, implying (under unchanged 

conditions of background wealth, risk and so forth) a unique and fixed certainty equivalent 

for each prospect. Elicited certainty equivalents are then interpreted as this unique and 

fixed certainty equivalent plus some error of banal origin with standard properties.  

Such added error, or something like it, is necessary: In repeated elicitations using 

exactly the same prospect, elicited certainty equivalents vary within subjects (Tversky and 

Kahneman 1992, p. 307; Krahnen, Rieck and Theissen 1997, p. 477; von Winterfeldt et al. 

1997, p. 422; Gonzalez and Wu 1999, pp. 144-146; Pennings and Smidts 2000, p. 1342) and 

other evidence also suggests inherent variability of elicited certainty equivalents (Butler 

and Loomes 2007; Loomes and Pogrebna 2014). Luce (1997, pp. 81-82) argued that theory 

and empirical interpretation need to take a position on such response variability. Adding 

mean zero error to an otherwise deterministic model of certainty equivalents is clearly one 

option here, and I call this the standard model of an elicited certainty equivalent. 

Alternatively, one might assume that the individual subject’s preference order is a 

random variable, and that each certainty equivalent elicited from that subject is fully 

determined by a single realization of that random variable: Call this a random preference 

model of an elicited certainty equivalent. Interest in random preference models is both 

long-standing and contemporary (Becker, DeGroot and Marschak 1963; Eliashberg and 

Hauser 1985; Hilton 1989; Loomes and Sugden 1995, 1998; Regenwetter and Marley 2001; 

Gul and Pesendorfer 2006; Regenwetter, Dana and Davis-Stober 2011; Ahn and Sarver 

2013; Apesteguia and Ballester 2016; Karni and Safra 2016), particularly in the realm of 

discrete choice. Here, I examine implications of this model for elicited certainty equivalents 

and find a significant complication of their empirical interpretation.  

Specifically, random model expected utility preferences (or more simply random EU as 

Gul and Pesendorfer 2006 call it) imply expected certainty equivalents that can mimic 
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those implied by standard model rank-dependent preferences (or more simply standard 

RDU). That is, a random EU agent can have expected certainty equivalents that appear to 

reveal rank dependent probability weighting functions of the inverse-s shape discussed by 

Quiggin (1982) and advocated by Tversky and Kahneman (1992) and other scholars. 

Indeed, one may derive the celebrated Prelec (1998) weighting functions from certainty 

equivalents governed by random EU. Hilton (1989) first showed that certainty equivalents 

have some unexpected properties under random EU; additionally, recent work by Navarro-

Martinez et al. (2015) contains a strong suggestion of my direction here. My results come 

first, with some intuition to follow; and to conclude I argue, contra widespread suggestions 

to the contrary, that elicited certainty equivalents may not nonparametrically identify 

preferences, since their conditional expectation (and critically, their interpretation) 

depends on the source of their variability.  

 

1. Formal results 

 

Consider simple prospects (𝑊𝑊,𝑝𝑝) with money outcomes 𝑧𝑧 = 𝑊𝑊 > 0 with probability 𝑝𝑝 

and 𝑧𝑧 = 0 with probability 1 − 𝑝𝑝. Simple prospects figure prominently in discussions of 

rank-dependent utility (RDU) and cumulative prospect theory (CPT) because their 

certainty equivalents are thought to reveal the probability weighting function of the rank-

dependent preference family when the utility or value of outcomes is linear (Tversky and 

Kahneman 1992; Prelec 1998). To see this, let the utility or value of outcomes have the 

power form 𝑣𝑣(𝑧𝑧) = 𝑧𝑧1/𝑥𝑥, where I write the power as 1/𝑥𝑥 for convenience and assume that 𝑥𝑥 ∈ (0,∞). The rank dependent utility or RDU of (𝑊𝑊, 𝑝𝑝) will then be 𝜋𝜋(𝑝𝑝|𝜔𝜔) ∙ 𝑊𝑊1/𝑥𝑥 (given 

specific 𝑥𝑥 and 𝜔𝜔) where 𝜋𝜋(𝑝𝑝|𝜔𝜔) is a probability weighting function depending on 

preference parameters 𝜔𝜔. The certainty equivalent of (𝑊𝑊,𝑝𝑝) is then 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥 ∙ 𝑊𝑊, but divide 

this by 𝑊𝑊 to free it of dependence on 𝑊𝑊 and let 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥 be the RDU 

normalized certainty equivalent of any simple prospect (given specific 𝑥𝑥 and 𝜔𝜔). Notice that 

when 𝑥𝑥 = 1 (that is for a linear value of outcomes), one has 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|1,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔), so 

normalized certainty equivalents of simple prospects are thought to reveal RDU (or CPT) 

probability weighting functions when 𝑥𝑥 = 1. Expected utility or EU is the special case 
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where 𝜋𝜋(𝑝𝑝|𝜔𝜔) ≡ 𝑝𝑝, so also define 𝐶𝐶𝑒𝑒𝑒𝑒(𝑝𝑝|𝑥𝑥) ≡ 𝑝𝑝𝑥𝑥 as the EU normalized certainty equivalent 

of any simple prospect (given specific 𝑥𝑥).  

Let 𝑐𝑐𝑐𝑐 be the certainty equivalent for (𝑊𝑊, 𝑝𝑝) elicited from a subject and let 𝑐𝑐 = 𝑐𝑐𝑐𝑐/𝑊𝑊 ∈
[0,1] be the normalized version of it. Commonly, if only implicitly, the empirical 

specification for observed normalized certainty equivalents is 𝑐𝑐 = 𝐸𝐸(𝑐𝑐|𝑝𝑝) + 𝜀𝜀, where 𝐸𝐸(𝑐𝑐|𝑝𝑝) is the conditional expectation function or c.e.f. of 𝑐𝑐 and one assumes that errors 𝜀𝜀 

have conventional properties (e.g. 𝐸𝐸(𝜀𝜀) = 𝐸𝐸(𝜀𝜀|𝑝𝑝) = 0). In a standard RDU model, the c.e.f. is 𝐸𝐸(𝑐𝑐|𝑝𝑝) = 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥, yielding the specification 𝑐𝑐 = 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥 + 𝜀𝜀 in which the 

error term 𝜀𝜀 is thought to arise from banal sources such as “carelessness, hurrying, or 

inattentiveness” (Bruhin, Fehr-Duda and Epper 2010, p. 1383). Estimation of (𝑥𝑥,𝜔𝜔) can 

then proceed using various estimators. Bruhin, Fehr-Duda and Epper use maximum 

likelihood, while Tversky and Kahneman (1992) use nonlinear least squares. Since 𝑐𝑐 is a 

limited dependent variable (most elicitation methods enforce 𝑐𝑐 ∈ [0,1]), the distribution of 𝜀𝜀 cannot be wholly independent of 𝑝𝑝. But one may accommodate this while keeping 𝐸𝐸(𝜀𝜀|𝑝𝑝) = 0 in various ways (see e.g. Bruhin, Fehr-Duda and Epper; Gonzalez and Wu 1999). 

A brief Monte Carlo study in my appendix looks at similar (and other) estimators. 

For many weighting functions 𝜋𝜋(𝑝𝑝|𝜔𝜔), 𝑥𝑥 and 𝜔𝜔 cannot be wholly identified solely from 

the normalized certainty equivalents of simple prospects. For instance suppose 𝜋𝜋(𝑝𝑝|𝜔𝜔) is 

the celebrated 2-parameter Prelec (1998) weighting function exp(−𝛽𝛽[− ln(𝑝𝑝)]𝛼𝛼) where 𝛼𝛼 

and 𝛽𝛽 are strictly positive parameters. Then the normalized certainty equivalent will be 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝛼𝛼,𝛽𝛽) = exp(−𝑥𝑥𝛽𝛽[− ln(𝑝𝑝)]𝛼𝛼), and only 𝛼𝛼 and the product 𝑥𝑥𝛽𝛽 will be estimable. 

Scholars know this quite well, so experimental designs meant to separately estimate all 

three parameters always contain at least some “non-simple” prospects. I focus on simple 

prospects because of their tractability and their simple interpretation under standard RDU: 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|1,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔), so normalized certainty equivalents of simple prospects reveal 

weighting functions at linear 𝑣𝑣(𝑧𝑧) (Tversky and Kahneman 1992; Prelec 1998). The Monte 

Carlo study in my appendix employs an experimental design (that of Gonzalez and Wu 

1999) containing both simple and non-simple prospects, and results of that study echo my 

formal results for simple prospects. 
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 In general, a random preference model might take both 𝑥𝑥 and 𝜔𝜔 to be realizations of 

nondegenerate random variables 𝑋𝑋 and 𝛺𝛺 within an individual. However, as far as I am 

aware, existing random preference estimations treat any weighting function parameters 𝜔𝜔 

as fixed within any individual (e.g. Loomes, Moffatt and Sugden 2002; Wilcox 2008, 2011), 

and contemporary random preference theory seems to be confined to treatment of 𝑋𝑋 as 

random only (e.g. Gul and Pesendorfer 2006; Apesteguia and Ballester 2016). Therefore, all 

of my random preference analysis treats only 𝑥𝑥 as the realization of a random variable 𝑋𝑋; 

and in any case I confine my analysis of the random model to the random EU special case.  

 In any distinct elicitation trial, an independent random EU model, or simply random EU 

for short, assumes that an independent and identically distributed realization 𝑥𝑥 of 𝑋𝑋 occurs 

and fully determines the normalized certainty equivalent 𝐶𝐶𝑒𝑒𝑒𝑒(𝑝𝑝|𝑥𝑥) =  𝑝𝑝𝑥𝑥. Assume that a 

probability density function 𝑓𝑓(𝑥𝑥|𝜓𝜓) of 𝑋𝑋 with support (0,∞) lies within an individual, with 

parameters 𝜓𝜓 governing moments or location, scale and so forth. Then define ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) as 

 

(1)  ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) ≡ 𝐸𝐸𝑋𝑋[𝐶𝐶𝑒𝑒𝑒𝑒(𝑝𝑝|𝑥𝑥)] = ∫ 𝑝𝑝𝑥𝑥𝑓𝑓(𝑥𝑥|𝜓𝜓)𝑑𝑑𝑥𝑥∞0 = ∫ exp(−𝑥𝑥𝑥𝑥)𝑓𝑓(𝑥𝑥|𝜓𝜓)𝑑𝑑𝑥𝑥∞0 ,  

 

where the final integral (which becomes useful shortly) lets 𝑥𝑥 = −ln(𝑝𝑝) and rewrites 𝑝𝑝𝑥𝑥 as 

exp(−𝑥𝑥𝑥𝑥). The function ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) is the expected normalized certainty equivalent of a 

random EU agent for simple prospects (𝑊𝑊,𝑝𝑝), given her underlying p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓) with 

parameters 𝜓𝜓. Under random EU, we again have an empirical model 𝑐𝑐 = 𝐸𝐸(𝑐𝑐|𝑝𝑝) + 𝜉𝜉 of the 

same form as the standard RDU model. However, the random EU c.e.f. is 𝐸𝐸(𝑐𝑐|𝑝𝑝) = ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) 

as given by eq. 1, and the errors 𝜉𝜉 are just 𝑝𝑝𝑥𝑥 − ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓). The eq. 1 definition implies that 

these new errors 𝜉𝜉 also satisfy the usual properties (𝐸𝐸(𝜉𝜉) = 𝐸𝐸(𝜉𝜉|𝑝𝑝) = 0), so we have a 

close resemblance between the random EU model 𝑐𝑐 = ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) + 𝜉𝜉 and the standard RDU 

model 𝑐𝑐 = 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) + 𝜀𝜀 and can estimate both using the same variety of estimators. 

 Allow a brief digression on elicitation methods. There is another way of thinking about 

the p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓) of 𝑋𝑋 in the Random EU model. Suppose an experimenter uses some 

method 𝑀𝑀 to elicit certainty equivalents 𝑐𝑐𝑐𝑐 from a subject, normalizing them as 𝑐𝑐 = 𝑐𝑐𝑐𝑐/𝑊𝑊, 

and computes 𝑥𝑥(𝑐𝑐,𝑝𝑝) to solve 𝑝𝑝𝑥𝑥 = 𝑐𝑐; that is, let 𝑥𝑥(𝑐𝑐,𝑝𝑝) ≡ ln(𝑐𝑐)/ln(𝑝𝑝). Suppose that in 

repeated elicitations using method M, across various values of 𝑝𝑝, the empirical c.d.f. of 
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𝑥𝑥(𝑐𝑐,𝑝𝑝) is observed to be 𝐹𝐹�𝑀𝑀(𝑥𝑥|𝑝𝑝) which converges to 𝐹𝐹𝑀𝑀(𝑥𝑥|𝑝𝑝) as the sample of observations 

grows. If 𝐹𝐹𝑀𝑀(𝑥𝑥|𝑝𝑝) is in fact independent of 𝑝𝑝 and so just 𝐹𝐹𝑀𝑀(𝑥𝑥), the variability of the 

normalized certainty equivalents observed by the experimenter could be interpreted as 

arising from a random EU model of the kind assumed here, where a p.d.f. 𝑓𝑓𝑀𝑀(𝑥𝑥|𝜓𝜓) is 

derived from 𝐹𝐹𝑀𝑀(𝑥𝑥). This suggests ways in which one might test versions of the random EU 

model (or versions of a random RDU model, and later I will return to this), but additionally 

indicates that the results here only require that elicitation methods satisfy two key 

assumptions: (1) repeated trials using the method yield variability in elicited certainty 

equivalents; and (2) this variability is consistent with the assumptions of a random EU 

model—namely, that 𝐹𝐹𝑀𝑀(𝑥𝑥) is independent of 𝑝𝑝. Neither assumption rules out dependence 

of 𝑓𝑓(𝑥𝑥|𝜓𝜓) on the elicitation method 𝑀𝑀; and debates about the relative merits of various 

elicitation methods need not impinge on these assumptions in any necessary way. 

The close resemblance of the standard RDU and random EU models suggests two 

possible types of mimicry. First, since 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|1,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔) in standard RDU, it will be 

troubling if ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) can “look like” a stereotypical 𝜋𝜋(𝑝𝑝|𝜔𝜔), that is, can have properties like 

those that scholars believe are empirically characteristic of RDU weighting functions. I will 

refer to this as weak mimicry (of standard RDU by random EU). Second, it may happen that 

for some well-known and specific 𝜋𝜋(𝑝𝑝|𝜔𝜔), there exists a specific 𝑓𝑓(𝑥𝑥|𝜓𝜓) such that ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) 

is a re-parameterization of 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔). Let 𝐷𝐷 be the set of possible parameter vectors 

(𝑥𝑥,𝜔𝜔), and let Ψ be the set of possible parameter vectors 𝜓𝜓; and suppose that, for some 𝑓𝑓(𝑥𝑥|𝜓𝜓), there exists a function 𝐻𝐻𝑓𝑓:𝐷𝐷 → Ψ such that ℂ𝑒𝑒𝑒𝑒�𝑝𝑝|𝐻𝐻𝑓𝑓(𝑥𝑥,𝜔𝜔)� ≡ 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) ≡𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥: Then one may say there is strong mimicry (of standard RDU by random EU) for 𝑓𝑓(𝑥𝑥|𝜓𝜓). Notice that strong mimicry implies weak mimicry but not vice versa. 

Since −ln(𝑝𝑝) > 0 ∀ 𝑝𝑝 ∈ (0,1), so that 𝑥𝑥 > 0 too, the final integral in eq. 1 is the one-

sided Laplace transform ℒ{𝑓𝑓}(𝑥𝑥) of the p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓)—provided it exists; and below I only 

use p.d.f.s for which the existence and form of ℒ{𝑓𝑓}(𝑥𝑥) have been demonstrated and 

derived by others. In such instances, these known Laplace transforms ℒ{𝑓𝑓}(𝑥𝑥) of a p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓) make it simple to derive various examples of ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓), using the relationship ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) = ℒ{𝑓𝑓}[−ln(𝑝𝑝)]. Some examples follow. 
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Example 1.  Suppose X has the Gamma p.d.f. 

 

 𝑓𝑓(𝑥𝑥|𝑘𝑘,𝜃𝜃) =  
1Γ(𝑘𝑘)𝜃𝜃𝑘𝑘 𝑥𝑥𝑘𝑘−1𝑐𝑐−(𝑥𝑥 𝜃𝜃⁄ ) for 𝑥𝑥, 𝑘𝑘, and 𝜃𝜃 ∈ (0,∞). 

 

It’s widely known that this has the Laplace transform ℒ{𝑓𝑓}(𝑥𝑥) = (1 + 𝜃𝜃𝑥𝑥)−𝑘𝑘, implying that  

 

(2)  ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝑘𝑘,𝜃𝜃) = (1 − 𝜃𝜃ln (𝑝𝑝))−𝑘𝑘.  

 

Figure 1-A shows this Gamma c.e.f. for 𝑘𝑘 = 0.75 and 𝜃𝜃 =2.79. At these parameter 

choices, it has the “inverse-s” shape many believe is characteristic of weighting functions 𝜋𝜋(𝑝𝑝|𝜔𝜔) and the fixed point 𝑝𝑝 ≈ 𝑐𝑐−1 which is also characteristic of Prelec’s (1998) 1-

parameter weighting function; so this is an instance of weak mimicry. One needs to say that 

this Gamma c.e.f. can (not must) weakly mimic this characteristic shape. Figure 1-B shows 

the Gamma c.e.f. for 𝑘𝑘 = 0.75 and 𝜃𝜃 =0.9: Here we see the “optimist” shape discussed by 

Quiggin (1982), and also the plurality shape of individually estimated weighting functions 

in Wilcox (2015). Such shape flexibility is also characteristic of 2-parameter weighting 

functions found in the literature on RDU and CPT, where this flexibility is usually regarded 

as a feature rather than a weakness. 

 

Example 2. Suppose X has the Inverse Gaussian (Wald) p.d.f.  

 

 𝑓𝑓(𝑥𝑥|𝜇𝜇, 𝜆𝜆) =  � 𝜆𝜆2𝜋𝜋 𝑥𝑥−3 2⁄ 𝑐𝑐𝑥𝑥𝑝𝑝 �−𝜆𝜆(𝑥𝑥−𝜇𝜇)22𝜇𝜇2𝑥𝑥 � for 𝑥𝑥, 𝜇𝜇 and 𝜆𝜆 ∈ (0,∞). 

 

This has the Laplace transform ℒ{𝑓𝑓}(𝑥𝑥) = 𝑐𝑐𝑥𝑥𝑝𝑝 �(𝜆𝜆 𝜇𝜇⁄ )�1 −�1 + 2𝜇𝜇2𝑥𝑥 𝜆𝜆⁄ �� (Seshadri 1993 

p. 41), implying that 

 

(3)  ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜇𝜇, 𝜆𝜆) = 𝑐𝑐𝑥𝑥𝑝𝑝�(𝜆𝜆 𝜇𝜇⁄ )�1 −�1 − 2𝜇𝜇2ln (𝑝𝑝) 𝜆𝜆⁄ ��. 
 

Figure 2 shows this Inverse Gaussian c.e.f. for 𝜇𝜇 = 11 and 𝜆𝜆 = 0.55. This also has the 

inverse-s shape and is also an instance of weak mimicry. Again, different parameter values 

will produce a wide variety of different shapes of this Inverse Gaussian c.e.f. 
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Figure 1-A. Gamma conditional expectation function.

ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝑘𝑘,𝜃𝜃) = 1 − 𝜃𝜃ln (𝑝𝑝) −𝑘𝑘
k = 0.75, 𝜃𝜃 = 2.79
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Figure 1-B. Another Gamma conditional expectation function.

ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝑘𝑘,𝜃𝜃) = 1 − 𝜃𝜃ln (𝑝𝑝) −𝑘𝑘
k = 0.75, 𝜃𝜃 = 0.9
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Example 3. Suppose 𝑋𝑋 has the (unshifted) Lévy p.d.f. 

 

 𝑓𝑓(𝑥𝑥|𝛿𝛿) =  
𝛿𝛿2√𝜋𝜋 𝑥𝑥−3 2⁄ 𝑐𝑐𝑥𝑥𝑝𝑝 �−𝛿𝛿24𝑥𝑥 � for 𝑥𝑥 and 𝛿𝛿 ∈ (0,∞). 

 

This has the Laplace transform ℒ{𝑓𝑓}(𝑥𝑥) = 𝑐𝑐𝑥𝑥𝑝𝑝�−𝛿𝛿𝑥𝑥1 2⁄ � (González-Velasco 1995, p. 537), 

implying that 

 

(4)  ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝛿𝛿) = 𝑐𝑐𝑥𝑥𝑝𝑝�−𝛿𝛿[−ln(𝑝𝑝)]1 2⁄ �.  

 

 

Earlier I noted that in the case of the Prelec (1998) 2-parameter weighting function, 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝛼𝛼,𝛽𝛽) = exp(−𝑥𝑥𝛽𝛽[− ln(𝑝𝑝)]𝛼𝛼). Clearly, this is identical to eq. 4 if we set 𝛿𝛿 = 𝑥𝑥𝛽𝛽 and 

require that 𝛼𝛼 = 1 2⁄ . This is very close to being a case of strong mimicry, but not quite, 

since eq. 4 can only mimic Prelec weighting functions when 𝛼𝛼 just happens to be 1 2⁄ . 

Empirically, estimates of 𝛼𝛼 have a wider range than a small neighborhood of 1 2⁄ . 
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Figure 2. Inverse Gaussian conditional expectation function.ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝜇𝜇, 𝜆𝜆) = 𝑐𝑐𝑥𝑥𝑝𝑝 λ µ⁄ 1 − 1 − 2𝜇𝜇2ln (𝑝𝑝) 𝜆𝜆⁄�
 𝜇𝜇 = 11,𝜆𝜆 = 0.55
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However, this result for the Lévy distribution provides a strong and fruitful hint. The 

Lévy distribution is a specific instance of the Lévy Alpha-Stable distributions, also known 

more simply as the Stable distributions. Except for special cases (Normal, Cauchy and 

Lévy), Stable random variables 𝑋𝑋 have no p.d.f. expressible in terms of elementary 

functions, but their Laplace transforms exist as relatively simple expressions. For Stable 

random variables with support (0,∞), Nolan (2017, p. 109) shows that the Laplace 

transform exists and is ℒ{𝑓𝑓}(𝑥𝑥) = exp �−𝛾𝛾𝑎𝑎 �𝑠𝑠𝑐𝑐𝑐𝑐 𝑎𝑎𝜋𝜋2 � 𝑥𝑥𝑎𝑎�, where 𝛾𝛾 > 0 is a scale parameter 

and 𝑎𝑎 ∈ (0,1) is called the index of stability or characteristic exponent (see Feller 1971 and 

Hougaard 1986 for similar forms parameterized differently). Therefore, for Stable 

distributions of 𝑋𝑋 on (0,∞), we have 

 

(5)  ℂ𝑒𝑒𝑒𝑒(𝑝𝑝|𝑎𝑎, 𝛾𝛾) = exp �−𝛾𝛾𝑎𝑎 �𝑠𝑠𝑐𝑐𝑐𝑐 𝑎𝑎𝜋𝜋2 � [−ln (𝑝𝑝)]𝑎𝑎�. 
 

Eq. 5 is identical to 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝛼𝛼,𝛽𝛽) = exp(−𝑥𝑥𝛽𝛽[− ln(𝑝𝑝)]𝛼𝛼) when we set 𝑎𝑎 = 𝛼𝛼 and 𝛾𝛾 =�𝛽𝛽𝑥𝑥 �𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝜋𝜋2 ��1/𝛼𝛼
, so we have strong mimicry of standard RDU with the 2-parameter Prelec 

(1998) function—provided that 𝛼𝛼 < 1. Since this is both characteristic of most empirical 

estimates of 𝛼𝛼 and indeed yields the characteristic inverse-s shape, this is strong mimicry 

of a well-known and widely used probability weighting function in the relevant part of the 

parameter space. 

 

2. Intuition 

 

 For intuition behind the formal results, it helps to use the more usual representation of 

the power utility function, specifically 𝑢𝑢(𝑧𝑧) = 𝑧𝑧𝜎𝜎 , thinking now of 𝜎𝜎 as having a distribution 

with support  Σ ⊆ (0,∞) under the random preference model. Then under EU the 

normalized certainty equivalent of a simple prospect (given any value of 𝜎𝜎) will be 𝑝𝑝1 𝜎𝜎⁄ , 

whose second derivative with respect to 𝜎𝜎 is  

 

(6)  
𝜕𝜕2𝜕𝜕𝜎𝜎2  𝑝𝑝1 𝜎𝜎⁄ =

−ln (𝑝𝑝)𝑝𝑝1 𝜎𝜎⁄𝜎𝜎4 [− ln(𝑝𝑝) − 2𝜎𝜎] > 0  for all  𝜎𝜎 < − 12 ln (𝑝𝑝). 
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As 𝑝𝑝 approaches zero, eq. 6 shows that the normalized certainty equivalent 𝑝𝑝1 𝜎𝜎⁄  

approaches being convex in 𝜎𝜎 at all 𝜎𝜎 ∈ (0,∞). Moreover, if Σ is in fact bounded above, 

there will be sufficiently small p such that 𝑝𝑝1 𝜎𝜎⁄  is convex ∀ 𝜎𝜎 ∈ Σ: In that event, Jensen’s 

Inequality implies that 𝐸𝐸�𝑝𝑝1 𝜎𝜎⁄ � > 𝑝𝑝1 𝐸𝐸(𝜎𝜎)⁄ . Assuming that 𝐸𝐸(𝜎𝜎) ≥ 1, then, we have 𝐸𝐸�𝑝𝑝1 𝜎𝜎⁄ � > 𝑝𝑝 for sufficiently small 𝑝𝑝. That is: If Σ is bounded above and 𝐸𝐸(𝜎𝜎) = 1 (the mean 

value function 𝑣𝑣(𝑧𝑧) is linear), mean normalized certainty equivalents will exceed 𝑝𝑝 when 𝑝𝑝 

is small enough. We have apparent overweighting of small enough probabilities.  

 As 𝑝𝑝 approaches 1, on the other hand, eq. 6 shows that 𝑝𝑝1 𝜎𝜎⁄  becomes concave at almost 

all 𝜎𝜎, and the argument above flips around: If Σ is bounded below away from zero, there 

will be p sufficiently close to 1 such that 𝑝𝑝1 𝜎𝜎⁄  is concave ∀ 𝜎𝜎 ∈ Σ, and Jensen’s Inequality 

then implies that 𝐸𝐸�𝑝𝑝1 𝜎𝜎⁄ � < 𝑝𝑝1 𝐸𝐸(𝜎𝜎)⁄ . Assuming that 𝐸𝐸(𝜎𝜎) ≤ 1, we have 𝐸𝐸�𝑝𝑝1 𝜎𝜎⁄ � < 𝑝𝑝 for 𝑝𝑝 

sufficiently close to one. That is: If Σ is bounded below away from zero and 𝐸𝐸(𝜎𝜎) = 1 (the 

mean value function 𝑣𝑣(𝑧𝑧) is linear), mean normalized certainty equivalents will fall short of 𝑝𝑝 when 𝑝𝑝 is high enough: We have apparent underweighting of high enough probabilities.  

 Figure 3 illustrates this intuition. Assume that the agent has a binomial distribution on 𝜎𝜎 such that 𝐸𝐸(𝜎𝜎) = 1: Specifically she has 𝜎𝜎 = 0.5 with probability 2 3⁄  and 𝜎𝜎 = 2 with 

probability 1 3⁄ . Figure 3 shows the function 𝑝𝑝1 𝜎𝜎⁄  for 𝜎𝜎 ∈ (0,3] for two values of 𝑝𝑝. The 

upper heavy curve is for 𝑝𝑝 = 0.95 and, as can be seen, this curve is overwhelmingly and 

strongly concave: In this case, 𝐸𝐸�0.95(1 𝜎𝜎)⁄ � < 0.95, so this agent appears to underweight 

high probabilities.  The lower heavy curve is for 𝑝𝑝 = 0.05 and, as can be seen, this curve is 

first convex and, for 𝜎𝜎 beyond about 1.5, very gently concave: Here, 𝐸𝐸�0.05(1 𝜎𝜎)⁄ � > 0.05, so 

this agent appears to overweight low probabilities. 

 This story does not completely explain the formal results: All of the examples in section 

1 involve p.d.f.s with support (0,∞), so this story (which is told by appealing to a support 

bounded above and bounded below away from zero) is only an aid to intuition, not any sort 

of demonstration. Therefore, the formal results are needed. The intuition does, however, 

explain why one may easily derive the characteristic inverse-s shape from many p.d.f.s 𝑓𝑓(𝑥𝑥|𝜓𝜓) underlying a random EU model. 
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3. Discussion and conclusions 

 

 My results complicate interpretation of elicited certainty equivalents. However, I say 

‘complicate’ rather than ‘undermine’ for several reasons. First, I have not shown that 

random preference EU and standard RDU certainty equivalents are indistinguishable. The 

formal results are entirely about conditional expectations and say nothing about 

conditional medians or conditional variances and other moments; and one might test both 

random EU and random RDU on the basis of these other characteristics.  

For instance, recall that 𝐶𝐶𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥 and suppose we now assume that 𝑥𝑥 is a 

realization of a random variable 𝑋𝑋, giving a random RDU model. Let 𝐶𝐶𝐶𝐶 denote coefficient 

of variation; then under random RDU, assuming that any weighting function parameters 

are fixed (not themselves random variables), we have  
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Figure 3.  Behavior of normalized certainty equivalent in σ
at p = 0.05 and p = 0.95
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(7)    𝐶𝐶𝐶𝐶(− ln(𝑐𝑐)) ≡ �𝑉𝑉(− ln(𝑐𝑐))𝐸𝐸(− ln(𝑐𝑐))
=

�𝑉𝑉(𝑋𝑋)[−ln (𝜋𝜋(𝑝𝑝|𝜔𝜔))]2𝐸𝐸(𝑋𝑋)[−ln (𝜋𝜋(𝑝𝑝|𝜔𝜔))]
=  

�𝑉𝑉(𝑋𝑋)𝐸𝐸(𝑋𝑋)
= 𝐶𝐶𝐶𝐶(𝑋𝑋) 

 

This says that for any given individual, the coefficient of variation of −ln(𝑐𝑐) will be 

equivalent to the coefficient of variation of 𝑋𝑋 and, moreover, independent of the particular 

W and 𝑝𝑝 of any simple prospect (𝑊𝑊,𝑝𝑝), regardless of whether the weighting function is an 

identity function (EU) or not (RDU). This immediately suggests a test of both random 

preference EU and RDU based on multiple (more than two) certainty equivalent elicitation 

trials for several different simple prospects. To my knowledge, such data are scarce but 

more could be gathered with appropriate experimental designs. The key point, however, is 

that for certainty equivalents, the random preference hypothesis can make strong refutable 

predictions about higher moments that are independent of the form or even the presence 

of any rank-dependent weighting function.  

 Second, discrete choice experiments already suggest that random EU cannot be a 

complete model of discrete choices (e.g. Loomes and Sugden 1998). Under the random 

preference hypothesis, much of what EU predicts concerning pairs of related discrete 

choice problems remains unchanged relative to what EU predicts in its deterministic form 

(Loomes and Sugden 1995; Gul and Pesendorfer 2006; Wilcox 2008). This implies that 

many well-known discrete choice violations of EU also violate random EU. Here I showed 

once more (see Hilton 1989) that certainty equivalents are a different matter: Under 

random EU, the expected values of certainty equivalents can mimic predictions of standard 

RDU and CPT. The upshot of this fact is that when one estimates risk models from certainty 

equivalents, part of the estimates (perhaps substantial parts) may reflect random 

preference heterogeneity as well as any underlying mean preference. 

Third, the formal results only complicate estimation based on conditional expectation 

functions. While this is the overwhelmingly common basis for estimation, some of the 

empirical literature on RDU and CPT uses pooled sample conditional medians of certainty 

equivalents for description (Tversky and Kahneman 1992, pp. 309-311; Gonzalez and Wu 

1999, p. 144-145). It may be that conditional median estimation (that is, least absolute 

deviation or LAD estimators) can solve the problem uncovered here. Recall the key role 

played by Jensen’s Inequality in Section 2 where I discussed intuition: There is no 
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counterpart of Jensen’s Inequality for medians. No individual-level conditional median 

estimations (based on elicited certainty equivalents, using LAD estimation) of either RDU 

or CPT models are available. (Tversky and Kahneman 1992 do estimate a pooled sample 

weighting function from pooled sample conditional medians, but using a nonlinear least 

squares estimator.) My appendix looks at a LAD estimator and finds encouraging results for 

random EU data, but not for standard model EU data. I know of no estimator that correctly 

identifies weighting functions regardless of the true probabilistic model generating the 

data; finding such an estimator would be a nice contribution to decision research.   

 However, meaningful preference measurement may not be possible without strong 

assumptions concerning the random part of decision behavior (Wilcox 2008; Blavatskyy 

and Pogrebna 2010; Wilcox 2011; Apesteguia and Ballester 2016). Some say that elicited 

certainty equivalents permit “nonparametric” identification and estimation of preferences 

(Gonzales and Wu 1999; Abdellaoui 2000; Bleichrodt and Pinto 2000; Abdellaoui, 

Bleichrodt and Paraschiv 2007) and many others repeat it (e.g. Prelec 1998; Luce 2000; 

Nielson 2003; Fox and Poldrack 2009; Wakker 2010). “Nonparametric” means different 

things, but many econometricians divide discussion of models in two parts: (1) a 

conditional expectation function, or perhaps a conditional median function, and (2) the 

error, the random part that remains once such a function has been removed in a way that 

makes the expectation (or median) of the error zero. In the preference measurement 

literature, scholars who say their estimation is “nonparametric” mean they are making few 

or no assumptions about the form of preference entities (utilities or values, and probability 

weights, and so forth) that appear in standard model conditional expectation functions. 

However, they routinely make the strong assumption of the standard model itself, and an 

old and well-developed alternative (the random preference model) has complicating 

consequences. 

 The essence of the standard model assumption is that the c.e.f. has an obvious 

interpretation—the intended interpretation being that of algebraic (deterministic) decision 

theory. Hendry and Morgan (2005, p. 23) argue that when we speak of model identification, 

we have things in mind beyond the original Cowles Foundation meaning—including 

“correspondence to the desired entity” and “satisfying the assumed interpretation (usually 

of a theory model).” Estimation of preferences from elicited certainty equivalents is 
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complicated in just these senses. The standard model is but one probabilistic model 

assumption, and under a venerable and contemporary alternative—the random preference 

model—the c.e.f. in part reflects the underlying distribution of preferences within the 

individual, in ways that can mimic “the desired entity,” the preference entity called the 

probability weighting function. I do not know whether certainty equivalents can 

nonparametrically identify such entities: This question needs a good answer. However, at 

this time there is certainly no rigorous reason to think elicited certainty equivalents free 

scholars of critical interpretive assumptions. As is true of discrete choices, we choose a 

probabilistic model the moment we interpret certainty equivalents. 
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Appendix: A brief Monte Carlo illustration of the problem 

 

  Simulated data sets for this brief Monte Carlo analysis of several estimation methods 

are based on the experimental design of Gonzalez and Wu (1999). Certainty equivalents 

were elicited from their subjects for 𝑡𝑡 = 1, 2, … , 165 distinct two-outcome prospects 

(𝑝𝑝𝑡𝑡,ℎ𝑡𝑡; 1 − 𝑝𝑝𝑡𝑡, 𝑙𝑙𝑡𝑡). These were constructed by fully crossing fifteen distinct pairs of high and 

low outcomes (ℎ𝑡𝑡 , 𝑙𝑙𝑡𝑡) with eleven distinct probabilities 𝑝𝑝𝑡𝑡 of receiving the high outcome ℎ𝑡𝑡 
(and corresponding probabilities 1 − 𝑝𝑝𝑡𝑡 of receiving the low outcome 𝑙𝑙𝑡𝑡). The eleven 

probabilities are 𝑝𝑝𝑡𝑡 ∈ {.01, .05, .10, .25, .40, .50, .60, .75, .90, .95, .99}; and the fifteen high and 

low outcome pairs are (ℎ𝑡𝑡 , 𝑙𝑙𝑡𝑡) ∈ {(25,0), (50,0), (75,0), (100,0), (150,0), (200,0), (400,0), 

(800,0), (50,25), (75,50), (100,50), (150,50), (150,100), ( 200,100), (200,150)}. These 

same 165 prospects (88 simple prospects and 77 non-simple prospects) are the “input” to 

the simulated subjects I create in the Monte Carlo data sets. Let 𝑍𝑍 = {0, 25, 50, … ,800} 

denote the set of the nine distinct outcomes found in these 165 prospects. 

 Each simulated subject 𝑠𝑠 = 1, 2, … 1000 in the first data set is given a random EU 

certainty equivalent for each of the 165 prospects. Each subject 𝑠𝑠 is endowed with 

parameters 𝑘𝑘𝑠𝑠 and 𝜃𝜃𝑠𝑠 of the Gamma distribution p.d.f. as given in Example 1 of Section 1. 

The parameter 𝑘𝑘𝑠𝑠 is drawn once for each subject from a Lognormal distribution with mean 𝐸𝐸(𝑘𝑘) = 0.75 and variance V(𝑘𝑘) ≈ 0.16. The parameter 𝜃𝜃𝑠𝑠 is then chosen (given the drawn 𝑘𝑘𝑠𝑠) so that ℂ𝑒𝑒𝑒𝑒(𝑐𝑐−1|𝑘𝑘𝑠𝑠,𝜃𝜃𝑠𝑠) = (1 + 𝜃𝜃𝑠𝑠)−𝑘𝑘𝑠𝑠 = 𝑐𝑐−1. This endows each simulated subject 𝑠𝑠 with 

a random EU c.e.f. having the fixed point 𝑐𝑐−1, as is characteristic of the 1-parameter Prelec 

(1998) weighting function, but also creates heterogeneity in the degree of curvature of 

subjects’ c.e.f.s. Then for each subject 𝑠𝑠, 𝑡𝑡 = 1,2, … ,165 values 𝑥𝑥𝑡𝑡𝑠𝑠 are independently drawn 

from the Gamma distribution with that subject’s parameters 𝑘𝑘𝑠𝑠 and 𝜃𝜃𝑠𝑠. These create the 

165 simulated elicited certainty equivalents 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 = �𝑝𝑝𝑡𝑡ℎ𝑡𝑡1/𝑥𝑥𝑡𝑡𝑠𝑠 + (1 − 𝑝𝑝𝑡𝑡)𝑙𝑙𝑡𝑡1/𝑥𝑥𝑡𝑡𝑠𝑠�𝑥𝑥𝑡𝑡𝑠𝑠 for each 

subject s. Repeating this 1000 times yields the “random EU” data set. 

 For comparison, I create a second data set of 1000 simulated subjects who are given 

standard EU certainty equivalents for each of the 165 prospects. Each simulated subject s is 

endowed with a fixed value 𝑥𝑥𝑠𝑠, drawn once for each subject from a Gamma distribution 

with the parameters 𝑘𝑘 = 0.75 and 𝜃𝜃 = 2.79. For each subject 𝑠𝑠, this 𝑥𝑥𝑠𝑠 then creates 165 
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expected certainty equivalents 𝐸𝐸(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠) = �𝑝𝑝𝑡𝑡ℎ𝑡𝑡1/𝑥𝑥𝑠𝑠
+ (1 − 𝑝𝑝𝑡𝑡)𝑙𝑙𝑡𝑡1/𝑥𝑥𝑠𝑠�𝑥𝑥𝑠𝑠: These are standard 

EU c.e.f.s, and one must somehow add standard model errors to them. To do this, notice 

that each expected certainty equivalent may be rewritten as a proportion of the interval 

[𝑙𝑙𝑡𝑡 ,ℎ𝑡𝑡], that is as ∆𝑡𝑡𝑠𝑠= (𝐸𝐸(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠) − 𝑙𝑙𝑡𝑡) (ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)⁄ . One may then interpret this proportion as the 

mean of a Beta distribution on the interval (0,1) and define parameters of that Beta 

distribution as 𝛼𝛼𝑡𝑡𝑠𝑠 = 𝜛𝜛∆𝑡𝑡𝑠𝑠 and 𝛽𝛽𝑡𝑡𝑠𝑠 = 𝜛𝜛(1 − ∆𝑡𝑡𝑠𝑠). (Beta distributions may be parameterized in 

terms of their mean ∆ ∈ (0,1) and an inverse dispersion parameter 𝜛𝜛 > 0, from which their 

more usual parameterization 𝛼𝛼 ≡ 𝜛𝜛∆ and 𝛽𝛽 ≡ 𝜛𝜛(1 − ∆) may be had. I chose 𝜛𝜛 = 6 to give 

the resulting simulated certainty equivalents 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 in this simulated Standard EU data 

conditional variances resembling those found in the simulated Random EU data.) Then one 

may draw a beta variate 𝑦𝑦𝑡𝑡𝑠𝑠 on (0,1) using these parameters, and the simulated certainty 

equivalents with their standard model error become 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 = 𝑙𝑙𝑡𝑡 + (ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)𝑦𝑦𝑡𝑡𝑠𝑠. 

  I consider four estimation methods. The first two methods use a standard RDU model 

of the c.e.f. of the 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠, that is 𝐸𝐸(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) = (𝑣𝑣𝑠𝑠)−1�𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) + �1 − 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)�𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡)�; 
the corresponding empirical model is then 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 = 𝐸𝐸(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) + 𝜀𝜀𝑡𝑡𝑠𝑠. I make the standard 

assumptions about the error, those being 𝐸𝐸(𝜀𝜀𝑡𝑡𝑠𝑠) = 𝐸𝐸(𝜀𝜀𝑡𝑡𝑠𝑠|𝑝𝑝𝑡𝑡,ℎ𝑡𝑡 , 𝑙𝑙𝑡𝑡) = 0, but also adopt the 

assumption of Bruhin, Fehr-Duda and Epper (2010) that 𝐶𝐶𝑎𝑎𝑉𝑉(𝜀𝜀𝑡𝑡𝑠𝑠) is proportional to 

(ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)2 for each subject. (This assumption happens to be true for the simulated Standard 

EU data.) This implies a “weighted error” 𝜖𝜖𝑡𝑡𝑠𝑠 = [𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 − 𝐸𝐸(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠)] (ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)⁄ , and the first 

two estimation methods optimize a function of these weighted errors.  

The first estimation method combines a nonlinear least squares estimator with lean 1-

parameter forms of the functions 𝑤𝑤𝑠𝑠 and 𝑣𝑣𝑠𝑠, 𝑤𝑤𝑠𝑠(𝑝𝑝) = 𝑝𝑝𝛾𝛾𝑠𝑠 �𝑝𝑝𝛾𝛾𝑠𝑠 + (1 − 𝑝𝑝)𝛾𝛾𝑠𝑠�1/𝛾𝛾𝑠𝑠�  and 𝑣𝑣𝑠𝑠(𝑧𝑧) = 𝑧𝑧𝜎𝜎𝑠𝑠 . This is the estimation method of Tversky and Kahneman (1992): I’ll call it 

NLS-M-L (for “nonlinear least squares, money errors, lean parameterization”). The second 

estimation method combines a maximum likelihood estimator with the same 𝑣𝑣𝑠𝑠(𝑧𝑧) = 𝑧𝑧𝜎𝜎𝑠𝑠 , 
but a more expansive 2-parameter weighting function 𝑤𝑤𝑠𝑠(𝑞𝑞) = 𝛿𝛿𝑠𝑠𝑝𝑝𝛾𝛾𝑠𝑠 �𝛿𝛿𝑠𝑠𝑝𝑝𝛾𝛾𝑠𝑠 + (1 − 𝑝𝑝)𝛾𝛾𝑠𝑠�� . 

The weighted error 𝜖𝜖𝑡𝑡𝑠𝑠 is assumed to have a Normal distribution with zero mean and 

constant variance. This estimation method is inspired by Bruhin, Fehr-Duda and Epper 

(2010), but I will always estimate at the individual subject level whereas they estimated 
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finite mixture models of the subject population and included prospect-specific error 

variance terms (which cannot be done in the case of individual estimation). I’ll call this 

method ML-M-C (for “maximum likelihood, money errors, common parameterization”). 

The power utility function, combined with some 2-parameter weighting function, is quite 

common in the literature on risk preference estimation. 

The third method writes an estimating equation in utility rather than money terms, 

and the parameterizations of 𝑣𝑣𝑠𝑠 and 𝑤𝑤𝑠𝑠 are maximally expansive. There are nine distinct 

outcomes in 𝑍𝑍, so there are nine distinct values of 𝑣𝑣𝑠𝑠(𝑧𝑧). Since the RDU value function is an 

interval scale, one can choose 𝑣𝑣𝑠𝑠(0) = 0 and 𝑣𝑣𝑠𝑠(800) = 1, leaving seven unique and 

distinct values of 𝑣𝑣𝑠𝑠(𝑧𝑧) as seven parameters to estimate. Similarly, the eleven distinct 

probabilities in the experiment become eleven distinct parameters 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡) to estimate. Now 

linearly interpolate 𝑣𝑣𝑠𝑠(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠) from the parameters 𝑣𝑣𝑠𝑠(𝑧𝑧) in the following manner. Let 𝑙𝑙𝑢𝑢𝑙𝑙(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠) = min𝑧𝑧∈𝑍𝑍 𝑧𝑧 | 𝑧𝑧 ≥ 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 and 𝑔𝑔𝑙𝑙𝑙𝑙(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠) = max𝑧𝑧∈𝑍𝑍 𝑧𝑧 | 𝑧𝑧 ≤ 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 be the least upper bound and 

greatest lower bound (among the nine outcomes in the experiment) on 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠, with values given by 

the parameter values 𝑣𝑣𝑠𝑠(𝑙𝑙𝑢𝑢𝑙𝑙(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠)) and 𝑣𝑣𝑠𝑠(𝑔𝑔𝑙𝑙𝑙𝑙(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠)). Then define 𝑣𝑣�𝑠𝑠(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠) =
[𝑙𝑙𝑒𝑒𝑙𝑙(𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠)−𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠]𝑣𝑣𝑠𝑠�𝑔𝑔𝑙𝑙𝑙𝑙(𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠)�+[𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠−𝑔𝑔𝑙𝑙𝑙𝑙(𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠)]𝑣𝑣𝑠𝑠�𝑙𝑙𝑒𝑒𝑙𝑙(𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠)�𝑙𝑙𝑒𝑒𝑙𝑙�𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠�−𝑔𝑔𝑙𝑙𝑙𝑙�𝑐𝑐𝑒𝑒𝑡𝑡𝑠𝑠� , 

a linear interpolation of 𝑣𝑣𝑠𝑠(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠). This estimation method then assumes that the c.e.f. of 𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠) 

is the RDU of prospect 𝑡𝑡, that is 𝐸𝐸(𝑣𝑣�𝑠𝑠(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠)|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) = 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) + �1 −𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)�𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡), 

and one may then think of 𝑣𝑣�𝑠𝑠(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠) − 𝐸𝐸(𝑣𝑣�𝑠𝑠(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠)|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) as a “utility error.” Following 

Wilcox (2011), assume the variance of these utility errors is proportional to 

[𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) − 𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡) ]2. Then 𝜁𝜁𝑡𝑡𝑠𝑠 = [𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠) − 𝐸𝐸(𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠)|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠)] [𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) − 𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡) ]⁄  is a weighted 

utility error that becomes the object of nonlinear least squares estimation. I call this the 

NLS-U-E estimation (for “nonlinear least squares, utility errors, expansive 

parameterization”). It is inspired by Gonzalez and Wu’s (1999) estimation method, though 

there are several differences between their method and this one (see Gonzalez and Wu 

1999, pp.146-148, for details). 

Finally, I consider an estimation method that may sidestep the issue identified in the 

text. Rather than taking (𝑣𝑣𝑠𝑠)−1�𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) + �1 − 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)�𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡)� to be the conditional 

mean of 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠, this last estimation method takes this to be the conditional median of 𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠: 
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That is, let 𝑀𝑀𝑐𝑐𝑑𝑑(𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) = (𝑣𝑣𝑠𝑠)−1�𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) + �1 − 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)�𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡)�, and let 

weighted money errors be 𝜖𝜖𝑡𝑡𝑠𝑠 = [𝐶𝐶𝑡𝑡𝑠𝑠 −𝑀𝑀𝑐𝑐𝑑𝑑(𝐶𝐶𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠)] (ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)⁄ . Although these errors 

have exactly the same form as the errors in the first two methods, the fact that we wish to 

estimate a conditional median function (rather than a c.e.f.) implies that least squares is not 

the appropriate estimator: Rather, we want a least absolute deviation or LAD estimator. 

Combined with the same lean parameterization used for the first method, I call this the 

LAD-M-L estimation (for “least absolute deviation, money errors, lean parameterization”). 

With the exception of the NLS-U-E estimation method, the well-known simplex 

algorithm of Nelder and Mead (1965) was used to optimize objective functions. For the 

NLS-U-E estimation method, I imposed monotonicity constraints on the estimated 𝑣𝑣𝑠𝑠(𝑧𝑧) 

and 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡) (one difference versus Gonzalez and Wu 1999) and this requires a different 

optimization algorithm: Powell’s (1992) COBYLA algorithm is used for this estimation 

instead. All estimations were performed using the SAS procedure “NLP” (nonlinear 

programming) in the SAS 9.4 version of the SAS/OR software. 

Rather than providing tabular results of these four estimation methods as applied to 

the two data sets, I provide a sequence of eight figures. The features of each figure are 

identical. Estimated weighting functions for the first 250 subjects in each data set are 

plotted as quite thin, light greyscale lines on a black background: This has the effect of 

representing the behavior of each method as a light cloud of lines. A heavy light grey 

identity line shows the (linear, identity) weighting function of an EU agent; deviations from 

this line represent both sampling variability and possible bias in the estimations. Finally, a 

heavy dashed white line plots the mean estimated probability weight (across all 1000 

subjects in each simulated data set) at each of the eleven values of 𝑝𝑝𝑡𝑡 in the experimental 

design: Since all simulated subjects in both data sets are EU agents with identity weighting 

functions, deviations of this heavy dashed white line from the identity line illustrate the 

bias of each estimation method in each data set. 

The figures come in pairs on each page that follows. Each page presents the results for 

one estimation method, with the top and bottom figures showing results for the Standard 

EU and Random EU data sets, respectively. The pair of Figures A1-a and A1-b show results 

for the NLS-M-L estimation method; Figures A2-a and A2-b show results for the ML-M-C 
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method; Figures A3-a and A3-b show results for the NLS-U-E method; and Figures A4-a and 

A4-b show results for the LAD-M-L method.  

None of these four estimation methods are bias-free for both the Standard EU and 

Random EU data sets, and this is the primary finding of this appendix. The method NLS-U-E 

is biased towards finding inverse-s probability weighting for both data sets: In the case of 

the Standard EU data I suspect this is because this method is just too parametrically 

expansive for the sample size. By contrast, the NLS-M-L and ML-M-C methods are virtually 

unbiased for Standard EU data, while they show the predicted bias when applied to the 

Random EU data. As speculated, the LAD-M-L method provides unbiased (and 

astonishingly tight) estimates for the Random EU data, but displays a pronounced bias in 

the Standard EU data in a direction opposite to inverse-s probability weighting. In sum, 

none of these four estimation methods are robust to the underlying source of randomness 

in the data generating process.  
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Figure A1-a: NLS-M-L Weighting Estimates, Standard EU Data
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Figure A1-b: NLS-M-L Weighting Estimates, Random EU Data
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Figure A2-a: ML-M-C Weighting Estimates, Standard EU Data
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Figure A2-b: ML-M-C Weighting Estimates, Random EU Data
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Figure A3-a. NLS-U-E Weighting Estimates, Standard EU Data
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Figure A3-b. NLS-U-E Weighting Estimates, Random EU Data
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Figure A4-a: LAD-M-L Weighting Estimates, Standard EU Data
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Figure A4-b: LAD-M-L Weighting Estimates, Random EU Data


